Решение является собственной разработкой компании. В 2021 году эта линия длинной 2,5 километра будет внедрена в энергосистеме Санкт-Петербурга, причем объем инвестиций составит 3,5 миллиарда рублей.
А в чем же главное преимущество этой линии, если говорить простым, понятным всем языком? Основной плюс – это передача большой мощности на среднем напряжении за счет увеличения значения тока. Альтернативой для такого мегаполиса, как Санкт-Петербург, могла бы стать прокладка традиционных кабельных линий. Но сопоставимый по габаритам и напряжению традиционный кабель не может физически передать требуемую мощность, соответственно, потребуется прокладка нескольких линий, что является более сложной задачей, зачастую не реализуемой в условиях города.
Здесь вроде бы приходится выбирать, что важнее: обеспечение современной северной столицы России электричеством на новом технологическом уровне – или сохранение ее культурного и исторического наследия, давно уже ставшего сокровищницей мирового значения. Или… не придется? А зачем выбирать, если можно сделать и то и другое одновременно.
Николай Воропай, член Международного комитета по присуждению премии «Глобальная энергия», научный руководитель института систем энергетики имени Мелентьева Сибирского отделения РАН, видит несколько преимуществ новой технологии, и одно из них – это нулевые потери энергии. При этом с точки зрения практического применения в Петербурге исключительно важна подземная прокладка кабеля большой мощности. «В городах можно наблюдать воздушные ЛЭП высоких напряжений для так называемого глубокого ввода электроэнергии в центр электропотребления. Это требует землеотвода под трассы ЛЭП. А как это решить в центре Петербурга, где сплошные архитектурные и исторические объекты?» — сказал Воропай «Глобальной энергии».
Как отмечают эксперты, данная технология особенно эффективна при строительстве кольцевых схем и энергомостов для вывода мощностей с крупных объектов генерации. В мегаполисах использование ВТСП КЛ позволит осуществлять более гибкую планировку застройки за счет наращивания мощности по мере развития районов без прокладывания дополнительных электросетей.
Для примера: вывод электроэнергии с ТЭЦ или передача большой мощности между крупными питающими центрами в обычных условиях предполагает строительство множества ЛЭП, и для них – поиск места. Представили, сколько вышек ЛЭП будет «понатыкано» в окрестностях станций? При условии подземной прокладки таких опор не будет вообще, но и здесь нюансы – потребуется использование нескольких традиционных кабелей высокого класса напряжения. А это в ряде случаев ограничено градостроительными нормами. Кроме того, для города предпочтительнее с точки зрения землеотвода, а также экологии и безопасности использование более низкого класса напряжения. ВТСП КЛ способна заменить эту инфраструктуру путем постройки всего одной линии, максимально эффективной и с минимальным воздействием на окружающую среду.
ВТСП КЛ соединит сейчас две действующие подстанции Санкт-Петербурга – «Центральную» на 330 кВ и «РП-9» на 220 кВ. Они расположены в центральной части города (около Лиговского проспекта), где существует проблема дефицита площадей под новое энергетическое строительство при растущем спросе на электроэнергию и высоких требованиях к надежности электроснабжения. Линия рассчитана на передачу 50 МВт мощности на среднем напряжении – 20 кВ.
Примечательно, что похожие линии есть в других странах (в США, Евросоюзе, Японии, Южной Корее, Китае), однако все они имеют длину менее 1 километра. Наиболее показательным является проект AmpaCity а немецком Эссене. Протяженность линии там составляет 1 километр, а расчетная передаваемая мощность — 40 МВА. Линия имеет открытую одноконтурную систему охлаждения, что требует подпитки жидким азотом каждую одну-две недели. Санкт-Петербургская линия соединяет две подстанции в центре города. Таким образом, российская ВТСП КЛ с ее 2,5 километрами протяженности и передаваемой мощностью 50 МВт аналогов в мире фактически не имеет. К тому же ее криогенная (охлаждающая) система является замкнутой и имеет общую протяженность в 5 километров, что также делает ее уникальной. Теперь только в России есть решения для разработки и создания замкнутых автоматизированных систем криогенного обеспечения.
Как считают специалисты, данный проект является базовым и пилотным для обоснования перспективных проектов модернизации систем энергоснабжения мегаполисов, которые в настоящее время обсуждаются и разрабатываются во многих странах мира.
Но есть и проблемы, в числе главных из них — исключительно дорогая криогенная система охлаждения, а также технологические ограничения по обеспечению равномерного охлаждения кабельной линии путем прокачки хладагента на большие расстояния. Так что длина такого кабеля до сотен километров – это пока, к сожалению, невыполнимая задача, считает Воропай. «Но со временем проблема огромных затрат, уверен, будет решена, а технические решения найдены», — отмечает в то же время ученый.
Зато конечный потребитель получает электроэнергию в необходимом объеме с требуемой надежностью. Плюсом Воропай считает и то, что обеспечивается так называемая теплая сверхпроводимость — охлаждение не до абсолютного нуля по Кельвину, а только до температуры кипения жидкого азота.
Другой эксперт, член Международного комитета по присуждению премии «Глобальная энергия», директор лаборатории прикладной сверхпроводимости Китайской академии наук Ли Сяо также обращает внимание, что криогенная система новой линии должна поддерживаться при температуре жидкого азота 77,4 К. А вот если рабочая температура сверхпроводника будет повышена до 200 К или даже до комнатной температуры 300 К, то тогда проект ВТСП КЛ будет более конкурентоспособным. «В настоящее время такого типа сверхпроводников для электропитания не существует, надеюсь, этот тип сверхпроводников появится в будущем», — сказал Ли Сяо «Глобальной энергии».
Основа ВТСП – сверхпроводниковый материал Bi2223/Ag с высоким содержанием серебра, сопротивление которого исчезает при определенных температурных режимах (65-80 Кельвина). Для обеспечения необходимого температурного режима используется двухконтурная система охлаждения. В первом контуре находится газообразный гелий, который охлаждает жидкий азот, циркулирующий во втором контуре по всей длине линии. При прохождении тока по ВТСП не выделяется тепло, магнитное поле локализовано, потери электроэнергии практически отсутствуют.
Проект, реализуемый «Россети ФСК ЕЭС», является межотраслевым. Помимо применения в электросетях, ВТСП КЛ могут быть внедрены во все энергоемкие отрасли. Масштабирование технологий будет способствовать росту энергоэффективности экономики.