• Пресс-центр
  • Контакты
  • Политика конфиденциальности
EN
Ассоциация "Глобальная энергия"
Advertisement
  • Ассоциация
    • О нас
    • Члены ассоциации
    • Партнеры
    • Cотрудничество
  • Премия
    • О премии
    • Состав Международного комитета
    • Положение о премии
    • Правила подачи заявки
  • Лауреаты
  • Пресс-центр
    • Новости
      • Наука и Технологии
      • Мероприятия
      • Проекты
      • Премия
    • Фото
    • Фильмы
    • Энергия пера
      • Победители 2024г.
      • Победители 2023г.
      • Победители 2022г.
    • Контакты для СМИ
    • Фирменный стиль
  • Мероприятия
    • Церемония объявления имён лауреатов
    • Церемония вручения премии
    • Почетные дипломы ассоциации
    • Regional to Global (От регионального к глобальному)
    • Доклад «10 прорывных идей в энергетике на следующие 10 лет»
    • “Молодой ученый 4.0”
    • Научный журнал “Глобальная энергия”
  • Видео
    • Фильмы
    • Интервью
    • Мероприятия
    • Короткие видео
Ничего не нашли
Все результаты поиска
  • Ассоциация
    • О нас
    • Члены ассоциации
    • Партнеры
    • Cотрудничество
  • Премия
    • О премии
    • Состав Международного комитета
    • Положение о премии
    • Правила подачи заявки
  • Лауреаты
  • Пресс-центр
    • Новости
      • Наука и Технологии
      • Мероприятия
      • Проекты
      • Премия
    • Фото
    • Фильмы
    • Энергия пера
      • Победители 2024г.
      • Победители 2023г.
      • Победители 2022г.
    • Контакты для СМИ
    • Фирменный стиль
  • Мероприятия
    • Церемония объявления имён лауреатов
    • Церемония вручения премии
    • Почетные дипломы ассоциации
    • Regional to Global (От регионального к глобальному)
    • Доклад «10 прорывных идей в энергетике на следующие 10 лет»
    • “Молодой ученый 4.0”
    • Научный журнал “Глобальная энергия”
  • Видео
    • Фильмы
    • Интервью
    • Мероприятия
    • Короткие видео
Ассоциация "Глобальная энергия"
Ничего не нашли
Все результаты поиска
Главная Новости Наука и Технологии

Российские ученые разработали пьезоэлектрические пленки для зарядки кардиостимуляторов

Ученые из Уральского федерального университета и Университета Авейру разработали биосовместимые кристаллические пленки, которые обладают высокими пьезоэлектрическими свойствами, то есть способны при механическом или тепловом воздействии генерировать электрический ток. Инновацию в будущем можно будет использовать при создании кардиостимуляторов. Результаты исследования опубликованы в журнале ACS Biomaterials Science & Engineering.

01.03.2024
в Наука и Технологии, Новости
A A
Российские ученые разработали пьезоэлектрические пленки для зарядки кардиостимуляторов
231
Поделилось
1.8k
Просмотры

Источник фото — Уральский федеральный университет

Практически все кардиостимуляторы используются для лечения брадикардии, т.е. замедленного сердечного ритма. Если в состоянии покоя сердце бьется 50–70 раз в минуту, то при стрессе или физических нагрузках частота сердечных сокращений увеличивается в два-три раза. Соответственно, при медленном сердцебиении мозг и тело не получают достаточного притока крови, что негативно сказывается на здоровье человека.

К числу наиболее эффективных относятся инвазивные кардиостимуляторы, которые отличаются от других устройств тем, что они имплантируются внутри тела пациента с помощью хирургической процедуры. Именно для таких устройств можно будет использовать биосовместимые кристаллические пленки, разработанные учеными из Уральского федерального университета и Университета Авейру (Португалия). Исходным материалом для пленок стал дифенилаланин – форма фенилаланина, одной из 20 аминокислот, необходимых для образования белков. Это вещество является частью человеческого организма, поэтому материалы из дифенилаланина обладают высокой совместимостью с живыми тканями.

Авторы исследования синтезировали пленки при помощи нового метода – кристаллизации из аморфной фазы под воздействием водяного пара. Традиционный способ получения подразумевает кристаллизацию в водном растворе, что приводит к формированию структур с плохо контролируемой морфологией.

«Ранее наши коллеги обнаружили в дифенилаланине высокие пьезоэлектрические коэффициенты. Но проблема в том, что создание из этого вещества пленок с плоской морфологией затруднительно, так как в растворе дифенилаланин собирается в трубчатые структуры. И это вызывало большие затруднения, поскольку, когда речь идет о создании элементов для микроэлектроники, то поверхность пленки должна быть ровной, чтобы на нее можно было наносить электроды. Разработанный нами метод решил эту проблему — мы смогли добиться получения пленок с плоской морфологией», – цитирует Уральский федеральный университет Дениса Аликина, заведующего лабораторией функциональных наноматериалов и наноустройств.

Биосовместимые пленки будут при биении сердца генерировать ток, который затем будет накапливаться в батареях кардиостимуляторов. Устройства накопления энергии, которые будут создаваться на основе таких материалов, позволят снять необходимость в регулярной замене выработанных батарей и, тем самым, снизить количество хирургических вмешательств.

Теги: материалыПортугалияученыеФормаЭлектроды

Читайте также

В Китае запущен крупнейший проект переработки угольной породы в стройматериалы
Наука и Технологии

В Китае запущен крупнейший проект переработки угольной породы в стройматериалы

07.05.2025
Новый катализатор продлевает срок службы водородных топливных элементов до 200 000 часов
Наука и Технологии

Новый катализатор продлевает срок службы водородных топливных элементов до 200 000 часов

06.05.2025
Углеродные конусы вместо лития: как отходы нефти помогают создавать новые аккумуляторы
Наука и Технологии

Углеродные конусы вместо лития: как отходы нефти помогают создавать новые аккумуляторы

06.05.2025
Показать еще

Новости

Тасмания зарядила Южную Америку: крупнейший в мире электрический паром спущен на воду

В Китае запущен крупнейший проект переработки угольной породы в стройматериалы

Новый катализатор продлевает срок службы водородных топливных элементов до 200 000 часов

Углеродные конусы вместо лития: как отходы нефти помогают создавать новые аккумуляторы

Россия участвует в создании самого мощного термоядерного магнита в истории

Разработана новая модель оценки сценариев развития мировой энергетики

Глобальное потепление: «точка невозврата» ещё не пройдена

Термоядерный бланкет: ключ к созданию чистой энергетики будущего

Японские ученые нашли способ удешевить производство водорода

Завершен прием заявок на премию «Глобальная энергия» 2025 года

Завершен прием заявок на премию «Глобальная энергия» 2025 года
Новости

Завершен прием заявок на премию «Глобальная энергия» 2025 года

30.04.2025

В 2025 году на премию поступило 90 номинационных представлений из 44 стран и территорий, охватывающих все шесть континентов мира. В...

ПодробнееDetails
  • Пресс-центр
  • Контакты
  • Политика конфиденциальности

© 2025 Ассоциация “Глобальная энергия” 8+

Ничего не нашли
Все результаты поиска
  • Ассоциация
    • О нас
    • Члены ассоциации
    • Партнеры
    • Cотрудничество
  • Премия
    • О премии
    • Состав Международного комитета
    • Положение о премии
    • Правила подачи заявки
  • Лауреаты
  • Пресс-центр
    • Новости
      • Наука и Технологии
      • Мероприятия
      • Проекты
      • Премия
    • Фото
    • Фильмы
    • Энергия пера
      • Победители 2024г.
      • Победители 2023г.
      • Победители 2022г.
    • Контакты для СМИ
    • Фирменный стиль
  • Мероприятия
    • Церемония объявления имён лауреатов
    • Церемония вручения премии
    • Почетные дипломы ассоциации
    • Regional to Global (От регионального к глобальному)
    • Доклад «10 прорывных идей в энергетике на следующие 10 лет»
    • “Молодой ученый 4.0”
    • Научный журнал “Глобальная энергия”
  • Видео
    • Фильмы
    • Интервью
    • Мероприятия
    • Короткие видео
English version

© 2025 Ассоциация “Глобальная энергия” 8+