Исходным материалом для производства углеродных нанотрубок является графен – плоская сеть из атомов углерода, имеющая геометрию пчелиных сот. С точки зрения структуры, углеродная нанотрубка представляет собой лист графена, свернутый в бесшовный полый цилиндр. Однослойные и многослойные нанотрубки производятся в виде порошка, волокон и тонких пленок. Они различаются по длине, диаметру и хиральности, то есть степени «смещения» сотового рисунка. Эти параметры влияют на свойства углеродных нанотрубок. Например, от хиральности зависит электропроводность, имеющая особое значение для прозрачных электронных и оптических устройств (лазеров, светодиодов, солнечных элементов).
Основной технологией для производства тонкопленочных одностенных углеродных нанотрубок является химическое осаждение из газовой фазы (CVD) – процесса, который используется для получения высокочистых твердых материалов. Одной из вариаций химического осаждения из газовой фазы является аэрозольный CVD, который позволяет получить нанотрубку в один этап: в высокотемпературный реактор подается поток из газообразного углеродного сырья (углеводородов, монооксида углерода, этанола) и предшественника катализатора, в частности, ферроцена – предшественника наночастиц железа. Под воздействием высокой температуры предшественник катализатора распадается на каталитические наночастицы, в результате чего происходит разложение источника углерода. Углерод осаждается на поверхности частиц, после этого начинают формироваться нанотрубки, которые после фильтрации образуют двумерную сетку – тонкую пленку однослойных углеродных нанотрубок.
Для ускорения роста нанотрубок исследователи, как правило, вводят в CVD-реактор углекислый газ, воду и соединения серы, которые, в том числе, обеспечивают повышение каталитической активности. Ученые Сколтеха попробовали использовать в качестве ускорителя водород. «В предыдущих работах было установлено, что ввод водорода в среду монооксида углерода может запустить дополнительную реакцию, в результате которой параллельно с реакцией Будуара [диспропорционирование монооксида углерода в углекислый газ: CO + CO → C + CO2 — гидрогенизация CO: CO + H2 → C + Н2О] образуется углерод. Мы пришли к выводу, что такое решение может сработать и в нашем случае», – цитирует Сколтех выпускника аспирантуры Илью Новикова.
Авторы обнаружили, что при концентрации водорода в 10% производительность синтеза одностенных углеродных нанотрубок выросла в 15 раз без какого-либо ухудшения их свойств как прозрачного проводника. «Изучив технологии выращивания нанотрубок методами оптической спектроскопии и электронной микроскопии, а также детально исследовав термодинамику процесса, мы пришли к выводу, что такой замечательный результат удалось получить благодаря гидрогенизации монооксида углерода», – приводит Сколтех слова Альберта Насибулина, руководителя Лаборатории наноматериалов.
Ученые также исследовали различные температурные режимы синтеза нанотрубок. Выяснилось, что при сравнительно низкой температуре водород обеспечивает значительное повышение каталитической активности, увеличивая количество трубок на выходе. В свою очередь, при высокой температуре водород ускоряет рост нанотрубок, позволяя получать длинные нанотрубки с высокой проводимостью пленки.